

Tijana Prodanović, University of Novi Sad

Gary Steigman, Ohio State University Brian D. Fields, University of Illinois at Urbana Champaign

THE (UN)TRUE DEUTERIUM ABUNDANCE IN THE GALACTIC DISK

RY ABOUT DEUTERIUM

- Only created in Big Bang (Boesgaard & Steigman 1985)
- All other processes destroy it (Epstein et al. 1976, Prodanović & Fields 2003)
- Should (?) decrease monotonically from high to low z
- Deuterium a powerful tool in cosmology!
 - + Cosmic baryometer! BBN success story
 - + WMAP & BBN (blue) and high-z obs. (yellow) a match!

$$y_D = (D/H) \times 10^5$$

 $y_{Dp} = 2.82^{+0.20}_{-0.19}$

- Deuterium a powerful tool in chemical evolution!
 - Probes virgin ISM fraction!

THE TROUBLE

Large variations of D in local ISM over different lines of sight!

$$0.5 \le y_D \le 2.2$$

Data from Linsky at al. (2006)

SOLUTION?

Deuterium preferentially (compared to H) depleted onto dust! (Jura 1982, Draine 2004, 2006)

Measure lower bound on the "true" D

* "True" ISM D abundance (Linsky at al. 2006)

$$y_{D,ISM+dust} \ge 2.31 \pm 0.24$$

* "True" ISM D = 82% of PRIMORDIAL!

GALACTIC CHEMICAL EVOLUTUON

- Deuterium destroyed through stellar cycling
- ***** Astration factor (Steigman et al. 2007) $1.4 \le f_D \equiv y_{Dp} / y_{DISM} \le 1.8$
- **×** But new *FUSE* high ISM D $f_D \le 1.22 \pm 0.15$
- Most gas still unprocessed?
- Gas observations say ~20% of present baryonic mass in ISM
- * But D observations say ~80% initial gas unprocessed!
- * Thus GCE says INFALL NEEDED

HOW MUCH INFALL?

- * Assume infall rate \sim star form. rate $\alpha \propto \psi$
- × D vs. gas fraction
- Shaded = observations
- × Allowed infall rate $0.5 \le \alpha \le 1$
- Almost balances out star-formation!
- Still tension with GCE
- Is ISM D really so high?

A BAYESIAN APPROACH

- Try something different make (almost) no assumptions
- Bayesian analysis (introduced by Hogan et al. 1997)
 - + Use all available LOS
 - + Assume only a possible (dust) depletion
 - + Find 2-parameter maximum likelihood $\{y_{D,\max}, w\}$
 - × $y_{D,\text{max}}$ Max. D abundance consistent with observations; a lower limit to true ISM D $y_{D,\text{max}} \leq y_{D,ISM}$
 - $w \equiv y_{D,\text{max}} y_{D,\text{min}}$ Depletion parameter

CHOICE: DEPLETION DISTRIBUTIONS

- Know nothing about (dust) depletion distribution
- Make as little assumptions
- Top hat all levels of depletion equally probable
- 2) Negative bias favors large depletion
- 3) Positive bias favors low depletion

LB VS. NON-LB

Local Bubble very different from non-Local

Bubble

- ⋆ LB blue
 - + Uniform
- * nLB red
 - + Large scatter
- First treat separately

RESULTS: LIKELIHOOD CONTOURS

Top-hat depletion distribution

× 21 Local Bubble LOS

$$y_{D,LB} \cong 1.5 \quad w \cong 0 \quad f_{D,LB} \leq 1.8$$

× 25 non-Local Bubble LOS

$$y_{D,nLB} = 2.1$$
 $w = 1.6$ $f_{D,nLB} \le 1.3$

× All 46 LOS

$$y_{D,\text{max}} = 2.0$$
 $w = 1.3$ $f_{D,\text{max}} \le 1.4$

2.0

 $y_{D,max} = 10^5 (D/H)_{max}$

2.5

3.0

0.0

1.0

RESULTS: TRUE ISM D ABUNDANCE

- Use all 46 LOS
- Top-hat depletion distribution highest max likelihood value

$$y_{D,ISM} \ge y_{D,\text{max}} = 2.0 \pm 0.1$$

- **× Marginally consistent with** $y_{D,ISM+dust}$ ≥ 2.31 ± 0.24 Linsky et al. (2006)
- × Releases tension with GCE models $f_D \le 1.4 \pm 0.1$

SUMMARY & CONCLUSIONS

- If Local ISM D abundance close to primordial problems with most GCE models
- Bayesian analysis following Hogan et al. (1997)
- Assume all variations due to (dust) depletion
- Analyze all LOS
- Tested 3 simple depletion distributions
 - + Top-hat gives max likelihood value
 - + "True" ISM D abundance new estimate:

$$(D/H)_{ISM} \ge (D/H)_{max} = (2.0 \pm 0.1) \times 10^{-5}$$

PROBLEMS

- Uniform LB D abundance vs. large scatter in nLB?
 - + LB no depletion?

$$y_{D,LB} = 1.5 \qquad w = 0$$

+ nLB - large depletion?

$$y_{D,nLB} = 2.1$$
 $w = 1.6$

- Is LB uniformily depleted?
- Is nLB enriched with unmixed infall?
- How do we discriminate?
- Is Fe really a good depletion indicator for D?
- Steigman & Prodanović (2009/10) in preparation

